ME 120: Linear Systems \& Control (Fall 2020) Homework \#7

Due 12/4/2020 at midnight Pacific Time via iLearn

[^0]Consider the same MSD system in Example 2.7.1

In this homework, we will see what this system does to input signals $u(t)=F(t)$. Throughout, let

$$
m=10^{-3} \mathrm{~kg}, \quad k=1 \mathrm{~kg} / \mathrm{s}, \quad b=0.1 \mathrm{~kg} / \mathrm{s}^{2}
$$

1. Recall that the Fourier transform $F(j \omega)$ of a signal $f(t)$ is its Laplace transform $F(s)$ when the complex variable s is purely imaginary. Unlike s which was a complex-valued "frequency" and hence a bit unclear, ω is real-valued and a more intuitive notion of frequency. When applied to the system's impulse response $h(t)$, the resulting $H(j \omega)$ is called the system's "frequency response".
(i) Compute the frequency response of the above MSD system. (1 points)
(ii) Compute the modulus of the frequency response, $|H(j \omega)|$, and plot it for $\omega \in[0,100]$. How does it differ between low and high frequencies? (3 points)
(iii) Compute the system's impulse response $h(t)$ over $t \in[0,1]$ with a sampling frequency of 1 kHz (not 1 Hz). Plot the response. (1 point)
(iv) Load the input signal $u(t)$ from hw7_data.mat. Compute the system's response $y(t)$ to this input, and plot both u and y in the same figure. What has been the effect of the system on u ? How does this relate to the system's frequency response from part (ii)? (3 points)
Hint: use MATLAB's function conv for computing the system's response, but be careful that it only approximates the $\int_{0}^{t} h(t-\tau) u(\tau)$ part of the $h \star u=\int_{0}^{t} h(t-\tau) u(\tau) d \tau$ using a sum, so you have to manually include the $d \tau$ part.
2. Recall that the impulse function has a unit area under its curve but all of that area is accumulated at $t=0$. Therefore, the impulse function is often approximated by

$$
\delta_{\Delta}(t)= \begin{cases}1 / \Delta & \text { for } 0 \leq t \leq \Delta \\ 0 & \text { for otherwise }\end{cases}
$$

when $\Delta \rightarrow 0$.

Consider the same MSD system above. Using MATLAB's ode 45, compute the response of the system of $u(t)=\delta_{\Delta}(t)$ for $\Delta=0.5,0.1,0.01$. Plot all three of them together with the theoretical impulse function $h(t)$ in the same plot. Use legend () to distinguish the curves. Explain the results. (2 points)
Hint: When you are writing the function odefun for using with ode 45 , recall that it has to have the form function $\mathrm{dx}=\operatorname{odefun}(\mathrm{t}, \mathrm{x})$. This function is precisely the function $f(t, x)$ in

$$
\dot{\mathbf{x}}=f(t, \mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{B} u(t)
$$

So when writing odefun, use its input t to check if $t>=0 \& \& t<=$ Delta or not, and set the value of u_t accordingly.

[^0]: * Collaborating and working with your peers are encouraged for homeworks, but copying is not allowed and you have to turn in your own independent writing.

